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iPSC-based merlin-deficient Schwann o

cell-like spheroids as an in vitro system for
studying NF2 pathogenesis

Neurofibromin 2 (NF2)-related schwannomatosis (NF2-SWN)
is an autosomal-dominant tumor predisposition syndrome.
NF2-SWN patients develop multiple benign tumors of the
nervous system, such as schwannomas, particularly bilat-
eral vestibular schwannomas, without current effective
treatments.” These tumors are caused by the bi-allelic
inactivation of the NF2 gene, which encodes for merlin
protein, in a cell of the Schwann cell (SC) lineage.? Changes
in merlin result in the dysregulation of a wide variety of
signaling cascades from the cell surface to the nucleus,
such as the Hippo signaling pathway, by repressing YAP/TAZ
nuclear translocation, and the FAK and PI3K/AKT/mTOR,
Ras/Raf/MAPK, TP53, and Rac1-Pak1 pathways.>

Our current understanding of the molecular pathogen-
esis of NF2, as well as the development of new effective
therapies, remains challenging due to the lack of non-
perishable preclinical models that recapitulate the genetics
and pathophysiology of human merlin-deficient SC and NF2
tumors. Induced pluripotent stem cells (iPSCs) constitute a
suitable cellular model to solve this caveat thanks to their
potential to differentiate into any cell type involved in NF2-
SWN traits. With this aim, we generated iPSC lines with
single or bi-allelic inactivation of NF2 by combining the
direct reprogramming of human primary vestibular
schwannoma cells, with the use of CRISPR/Cas9 NF2 gene
editing (Fig. 1A). Genomic characterization of the gener-
ated NF2(+/—) and NF2(—/—-) iPSC lines showed no dif-
ferences with respect to the cells of origin, nor pathogenic
off-target alterations of the edited lines, except for the
induced NF2 variant. All clinical, genetic, and genomic in-
formation are summarized in Tables S1—4 and Figures S1
and 2. The NF2 iPSC genotypes were further confirmed by
evaluating merlin expression through Western blot analysis
(Fig. 1B).
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NF2(+/—) and NF2(—/-) iPSC lines expressed cell sur-
face proteins and transcription factors associated with
pluripotency (Fig. 1C; Fig. S3), were positive for alkaline
phosphatase staining, and showed karyotype stability after
at least 20 passages (46, XY). However, whereas NF2(+/—)
showed classical iPSC colony morphology, NF2(—/—) iPSCs
presented less compact colony formation, eventually
aggregating in the center of the colony, growing upwards
and undergoing spontaneous differentiation (Fig. 1C).
Furthermore, NF2(+/-) iPSCs showed the capacity to
differentiate into the three primary germ layers in vitro
through embryoid body formation, whereas NF2(—/—) lines
required direct differentiation to acquire expression of the
three germ layers (Fig. 1D; Fig. S3D and Table S5) and
showed lower adherence capacity than their control
NF2(+/—) counterparts (Fig. S3E). Nonetheless, despite the
observed altered phenotype of NF2(—/—) iPSC lines, we
were able to establish three NF2 isogenic paired iPSC lines
(NF2(+/—) and NF2(—/-)) with different genomic back-
grounds and cells of origin.

Given that the cells that initiate schwannoma formation
are NF2(—/-) cells of the SC lineage, we applied a differ-
entiation protocol towards the neural crest (NC)-SC axis.*
After ten days of NC differentiation, cells achieved NC
morphology, expressed NC markers, and repressed expres-
sion of pluripotency markers. However, NF2(—/—) NC cells
showed population heterogeneity detected by flow cytom-
etry and spontaneous expression of S100B, a marker of
mature SCs (Fig. 1E, F; Fig. S4), indicating again altered
behavior. Even so, they were able to maintain self-renewal
capacity (>18 passages) and could be cultured after several
freeze—thaw cycles. No differences in migration capacity
were observed between the different genotypes (Fig. S4E),
but reduced proliferation rates were observed in NF2(—/—)
NC cells (Fig. S4F). Then, NC cells were differentiated to SC
using standard 2D conditions. However, both NF2(+/—) and
NF2(—/—) cells showed difficulties in maintaining adher-
ence to culture dishes (Fig. S5). Therefore, we applied a 3D
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Merlin-deficient iPSCs can differentiate towards SC-like spheroids, showing dysregulation of multiple signaling pathways

already described for NF2(—/—) SC, and altered in human schwannomas. (A) Schematic representation of the experimental pro-
cedure for obtaining merlin-null clones. (B) Merlin expression was analyzed by western blotting. The FiPS line generated from
fibroblasts (NF2+/+) was used as a control cell line. (C) Morphology of iPSC colonies (left panel) and immunochemistry of plu-
ripotency markers including NANOG, OCT4, and SOX2 (in green), as well as TRA-1-81, SSEA3 (in red), and TRA-1-60 (in cyan). Cell
nuclei were stained with DAPI. Scale bar, 75 uM. (D) Immunochemistry was used to demonstrate the capacity of the lines to in vitro
differentiate to the three primary germ layers of NF2(-+/—) lines: mesoderm (ASMA in green and ASA in red), ectoderm (TUJ1 in
green and GFAP in red), and endoderm (AFP in green and FOXA2 in red). For NF2(—/-), a directed differentiation was performed
due to the inability of these lines to generate embryoid bodies, for mesoderm (ASMA in green and GATA4 in red), ectoderm (TUJ1 in
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differentiation protocol and generated SC-like spheroids for
up to 30 days.” To evaluate the SC differentiation capacity
of NF2(+/—) and NF2(—/—) cell lines in 3D, we studied the
transcriptome at three time points (7, 14, and 30 days) of
the differentiation process. NF2(+/+), NF2(+/-), and
NF2(—/—) SC-like spheroids showed expression of typical SC
lineage markers already at day 7 and up to 14 days of dif-
ferentiation, such as CDH19, GAP43, EGR2, MPZ, PLP1, and
S100B. However, at day 30 of differentiation, the expres-
sion of some SC markers decreased (SOX10 and PLP1)
whereas some central nervous glial markers appeared
(FABP7 and ASTN1), suggesting loss of SC commitment
(Fig. S6). Expression of some of these markers was also
corroborated by immunofluorescence analysis, showing
homogenous expression throughout the spheroids (Fig. 1G).
Finally, we confirmed the NF2(—/—) cell lines displayed a
very similar in vitro NC-SC expression roadmap at 3D to that
previously determined for NF2(+/+) differentiating SCs in
2D" at day 7 and day 14 (Fig. 57). For all these reasons, we
decided to focus the analysis at day 14 of differentiation
(Fig. S8).

To better characterize NF2(—/—) SC-like spheroids and
the effect of the absence of NF2 on them, we performed
differential expression analysis of the distinct genotypes at
day 14 of SC differentiation. Only 125 genes were differ-
entially expressed when comparing NF2(+/+) and NF2(+/
—) genotypes, and most of them were related to cellular
polarity and adhesion, to mTOR-pI3K-Akt pathway, or
directly regulated by merlin (CHL1) (Fig. S9A, B). A higher
number of differentially expressed genes were found when
comparing the NF2(—/—) to NF2(+/—) or NF2(+/+) (2874
and 3447, respectively) (Fig. S9C, E), indicating that the
complete NF2 inactivation is the driver of the major
expression changes in these cells. To determine whether
this cellular model recapitulated the described patho-
physiology of NF2-deficient SCs, we performed functional
enrichment analyses, which showed that mTORC1, NFKB,
p53, Hedgehog, and IL6-JAK-STAT3 signaling pathways were
significantly enriched in NF2(—/—) SC-like-spheroids when
compared with NF2(+/—) or NF2(+/+) SC-like spheroids
(Fig. S9D, F), as previously described.?

Sample gene set enrichment analysis (ssGSEA) identified,
as expected on merlin deficient cells, that TAZ and TEAD2
target genes were up-regulated in NF2(—/-) SC-like
spheroids, as did genes regulated by FAK and PI3K/AKT/

mTOR pathways (Fig. 1H).> We were also able to confirm
that some of the major YAP and PI3K/AKT/mTOR pathway
target genes, known to be altered in both NF2(—/—) pri-
mary SCs and schwannomas, were significantly up-regu-
lated in NF2 deficient SC-like spheroids. Moreover,
alterations were found in well-known merlin-related cyto-
skeletal organization markers, such as ltgaé, Dag1, and
Col1a2® (Fig. 11; Fig. $10) which could compromise their
ability to differentiate towards an SC identity in 2D culture
conditions. Similarly, GSEA analysis revealed that other
relevant merlin targets previously found to be altered in
schwannomas were also up-regulated in the NF2(—/-)
spheroids (Fig. S8, 10).

Altogether, these findings showed that the alterations
identified in NF2(—/—) iPSC-derived SC-like spheroids could
be attributed to the lack of merlin. Moreover, these results
highlight a strong correlation between the previously
described altered signaling pathways and gene expression
profiles of merlin-deficient SCs and the ones observed in
NF2(—/—-) iPSC-derived SC-like spheroids, indicating that
these cells, with single or bi-allelic inactivation of NF2,
constitute a genuine in vitro human system for the study of
the NF2 role in SC, and potentially in any cell type associ-
ated with NF2-SWN pathogenesis.
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green, GFAP in red, and PAX6 in pink), and endoderm (AFP in green, and FOXA2 and SOX17 in red). Scale bar, 75 pM. (E) NC
morphology of NF2(+/—) and NF2(—/—) cell lines (left panel; scale bar, 75 pM) and immunocytochemistry of AP2 (green), p75
(green), and S100B (red) (scale bar, 25 pM); and Oct4 (green) and SOX10 (red) (scale bar, 100 uM. DAPI (blue) was used to stain cell
nuclei. (F) Expression levels of the genes related to a pluripotent stage (POU5F, Nanog, and Sox2), an NC stage (p75, TFAP2A, and
Sox10), and a SC marker (5100). Sample disposition: 1. NF2(+/+): FiPS, NF2(+/—); 2. VSi-25; 3. VSi-267; 4. FiPS-CasB2, NF2(—/-);
5. VSi-25-CasD7; 6. VSi-267-CasD2; 7. FiPS-CasH6 (see Table S2 for the information on iPSC lines). The bars express mean normalized
expression (NE) + standard deviation from three independent experiments. (G) Phase contrast images of NF2(+/—) and NF2(—/—-)
spheroids at day 7 of SC differentiation in 3D. No spheroids could be generated from the FiPS-CasB2 NF2(+/—) NC-derived cells (left
panel; scale bar, 75 uM) and immunochemistry of p75 (green) and S100B (red) after 14 days of SC differentiation (scale bar, 250 uM).
(H) The ssGSEA score in three individual pathways between NF2(+/+) and NF2(+/—) versus NF2(—/—) is shown. The error bars
correspond to the standard error with the dot in the center as the mean. Samples from different genotypes were linked according
to the source, one from the iPSC cell control line (FiPS), and two from vestibular schwannomas (25 and 267). (I) Gene expression
analysis with VST values is shown for each gene. The bars express mean normalized expression +standard deviation from three
independent experiments. t-test was performed for each individual comparison among genotypes. Mean and standard deviation are
shown. Significant comparisons are shown as *p < 0.05, **p < 0.01, and ***p < 0.001.
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